PRACTICA 5... ELABORACIÓN DE SOLUCIONES

ELABORACIÓN DE SOLUCIÓN HIDROALCOHÓLICA DE ERITROMICINA 2% (Indicada para el tratamiento del Acné leve o moderado , vía tópica) Material y equipos:

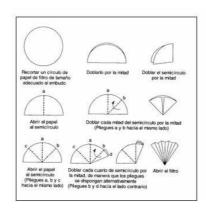
balanza, vasos de precipitado, varilla vidrio, agitador magnético, frasco de topacio, papel de filtro, embudo, espátulas, pipetas pasteur...

Composición:

- Solución hidro-alcohólica a.a.csp... 100g

(aa : significa a partes iguales de alcohol 96° y agua,

y cps ¿qué significa?: cantidad suficiente para_)


Sin embargo, preparada según estas proporciones, la eritromicina precipita tras 1 ó 2 días y toma un aspecto gelatinoso. Porque la eritromicina es inestable en un medio donde el % de agua es demasiado alto; pero, si es soluble en alcohol y en propilenglicol, por lo que hay que cambiar el excipiente hidroalcólico por el siguiente:

NOSOTROS SOLAMENTE VAMOS A PREPARAR 50g, ASÍ QUE CAMBIA LAS CANTIDADES DE CADA COMPONENTE

¿CUÁNTO TIENES QUE PESAR DE PROPILENGLICOL?_14g__ porque 50-1-25-10=14

M.O.: -Pesar los 2 g (en nuestro caso 1 g) de eritromicina en un vaso de precipitado y añadir el alcohol

- -Agitar hasta total disolución (agitador magnético)
- -Añadir el propilenglicol
- -Finalmente añadir el agua en pequeñas porciones y bajo agitación constante.
- Filtrar y guardar en frasco de topacio

PRACTICA 5 (2ª parte)

Casos teórico- práctico de Concentración de Soluciones y porcentajes

1° RELACIONA cada expresión de la concentración con su significado

a. 3% en volumen 1. Hay 0,5 moles de soluto en 1 litro de disolución.

b. 2 N 2.Hay 1 g de soluto en 100 ml de disolución

c. 1%p/v 3.Hay 2 equivalentes por gramo de soluto en 1.000 ml de disolución

d. 0,5 M 4. Hay 3 ml de soluto en 100 ml de disolución.

1d, 2 c, 3b, 4a

2º Si se quiere preparar una disolución con la siguiente fórmula:

Sulfato de cobre	0,5g	2 g
Sulfato de zinc	0,025g	0,1 g
Agua purificada	csp 25ml	c.s.p. 100 ml

-¿Qué cantidad se deberá coger de cada componente, si se quiere preparar la cuarta parte?

3° CAMBIO DE UNIDADES de Volumen:

A) Reducir a litro (1):

a) $67,68\text{ml} \rightarrow 0,067681$

b) 230 dm³ 2301 (porque $1 dm^3 = 1 litro$)

c) $3270,67cm^3$ 3,270671 (recuerda que $1cm^3=1cc=1ml$)

B)Pasar a ppm $0.5 \mu g/g$ 1 ug= 0.001 mg (\acute{o} 10⁻³) entonces 0.5 ug=0.0005mg (5.10⁻⁴)

Y el gramo del denominador se pasa a Kg 1g=0,001Kg

0.0005 mg / 0.001 Kg = 0.5 ppm

¡Recuerda que ppm es lo mismo que mg/Kg, ó mg/l!

PRACTICA 5 (3ª parte)

PREPARAR UNA SOLUCIÓN A PARTIR DE OTRA DE CONCENTRACIÓN CONOCIDA: SOLUCIÓN ACUOSA DE CLORHEXIDINA al 0,05%, 100ml

Si tenemos en la farmacia una botella de antiséptico

Clorhexidina al 2% y necesitamos 100ml de Clorhexidina
al 0,05%

3.1) ¿Qué cálculos son necesarios para saber qué volumen debo tomar de la botella de Clorhexidina 2%?

Como se cumple siempre la igualdad $Vi \times Ci = Vf \times Cf$

es decir volumen por concentración de una disolución de partida es igual al volumen por concentración de la disolución que se va a preparar

 $Vi \times 2\% = 100 ml \times 0.05 \%$ Vi = 2.5 ml Por lo que tengo que coger 2.5 ml de la botella que hay en el laboratorio (Clorhexidina 2%)

En un matraz aforado de 100ml pongo 2,5 ml de esa botella y completo con agua destilada y enraso hasta 100ml

Y ya tengo la Disolución 100ml al 0,05%

3.2)Escribe qué material emplearías para preparar la solución de 100ml de clorhexidina al 0,05% : matraz aforado de 100, pipeta graduada (de 5ml), vaso precipitado, pipeta pasteur

Si se usa pipeta graduada, no hay que poner en el material probeta. Además, la probeta no es tan exacta y se usaría para volúmenes mayores (>5ml....)